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Abstract A wide variety of complex physical systems described by unitary matrices have been 
shown numerically to satisfy level statistics predicted by Dyson‘s circular ensemble. We argue 
that the impact of localization in such systems is to impose certain restrictions on the eigenvalues. 
We consider a solvable model which takes into account such restrictions qualitativeiy and find 
that within the model a gap is created in the spectrum, and there is a transition from the universal 
Wigner distribution towards a Poisson distribution with increasing localization. 

A characteristic statistical property of chaotic (as opposed to integrable) states in quantum 
systems is the distribution of their energies. In particular, the nearest-neighbour spacing 
distribution or the long-range spectral rigidity of a local set of levels for a wide variety of 
systems in the chaotic regime agree remarkably well with the universal Wigner distributions 
obtained from the Gaussian random matrix theory [1,2]. The same is also me for ergodic 
quasi-energy eigenstates for a variety of periodically driven systems [3] described by the 
Flouquet matrix, whose eigenvalues lie on a complex unit circle, and belong to Dyson’s 
‘circular’ ensemble [4]. We will reserve the term Wigner ensemble for eigenvalues on the 
real line. Both ensembles follow the same Wigner distributions in the limit of large number 
of eigenvalues. 

A new problem in this area is the impact of localization on the statistical properties 
of chaotic eigenstates, which leads to deviations from the universal Wigner distributions. 
Whilst attempts have been made to generalize the Wigner ensemble to include such 
deviations at a phenomenological level by imposing suitable constraints IS, 61, it is clear that 
such constraints cannot affect the circular ensemble in the same way because the eigenvalues 
are already bounded. Nevertheless, numerical studies involving the scattering matrix for 
disordered conductors [7], as well as the Flouquet matrix for periodically driven systems 
[SI, show similar deviations in the spectral properties 191. It is therefore worthwhile to 
consider an analytic model that can accomodate such deviations in the circular ensemble. 

In this letter, by considering the scattering matrix describing a disordered conductor 
as an example, we will argue that the qualitative effect of localization on the statistical 
properties of the circular ensemble is to impose certain restrictions on the eigenvalues. We 
will then construct a solvable model that takes into account these restrictions in a qualitative 
way, and show that this leads to a transition in the spectral properties from the universal 
Wigner distribution towards a Poisson distribution as a function of a single parameter related 
to localization. 
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Let us consider a one-dimensional scattering of plane waves of energy E from a potential 
andhk = r /2m(E - VO), where m barrier of width a and height VO. Define fib = 

is the mass of the incident particle. The 2 x 2 scattering matrix S has the simple form 

where 

cos6 = 2ko/J4ki + kZ sinz(ka)[l - k:/k21 cos f i  = cos 6 cos ka. 

The eigenvalues are e-i*’ie. In a very crude way, we might think of the case E > Vo to 
mimic a metal, with plane-wave states in the region 0 c x c a,  while the case E c VO will 
mimic a finite length insulator with exponentially localized states in the region. It is clear 
that while in the former case the quantity cos 6 can take on all values from zero to unity as 
ko is varied, it becomes restricted to values less than unity in the latter case, where k = i p  is 
imaginary and the term kzsinZ(ka)[l-k~/k2] is replaced by pZsinhz(pa)[l+k,2/p2]. Such a 
restriction can be interpreted as a constraint on the possible maximum of Tr(S+$) which is 
proportional to cos6, and the restriction increases with increasing ‘localization’ of the waves 
inside the barrier. In case of a many-channel quasi-one-dimensional conductor, we can think 
of the various channels as having different incoming energies, and an ensemble of conductors 
corresponding to different possibilities for the values of k. Channels in the metallic regime 
will correspond to having all possible values of 0 and therefore the eigenvalues will be 
uniformly distributed on the complex unit circle without any restriction. On the other hand, 
if the channels are localized, the eigenvalues will be distributed in a way consistent with 
the restriction on the trace as mentioned above. This very crude argument suggests that 
at a phenomenological level, the impact of localization on the eigenvalue distribution of 
scattering matrices can be incorporated by imposing constraints on Tr(S + St). This can 
be done in a way suggested by Balian [lo], namely by introducing Lagrange multiplier 
functions as constraints in the joint probability distribution of eigenvalues. In the present 
work we will choose a constraint that has the qualitative features described above, and 
for which one can, at least in principle, solve for all n-point correlation functions of the 
eigenvalue distribution. The hope is that the qualitative effects obtained from such a solvable 
model will be independent of the particular choice of the model. Indeed we will show that 
the model predicts a transition from the highly-correlated Wigner distribution towards an 
uncorrelated Poisson distribution in a way that is qualitatively similar to the transition seen 
numerically for a variety of systems. 

For eigenvalues on the complex unit circle, Dyson’s circular ensemble is based. on 
the basic ansatz of the random-matrix theory that for a physical system described by an 
N x N matrix S with eigenvalues e’@*, n = 1,. . . , N ,  the joint probabilty distribution for 
the ensemble of all random S matrices consistent with given symmetries (unitarity, time 
reversal, etc) can be written quite generally in the form [l] 

II, = h a  + f i  

Here CY is a symmetry parameter and is equal to 1, 2 or 4 for orthogonal, unitary and 
symplectic ensembles, respectively. The function w(6)  is a Lagrange multiplier function 
which might take care of any system-dependent physical constraint [lo], and in general 
may depend on various physical parameters. Note that for unbounded eigenvalues of the 
Wigner ensemble such a constraint is required to keep the distribution normalizable. For the 
circular ensemble the above distribution is already normalizable for w(6) = constant and 
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there is in general no need for additional constraint terms. Dyson has shown explicitly that 
the two-level correlation function for the above dishibution for w(@)  = 1 / 2 ~  is identical to 
that of the Wigner ensemble for unbounded eigenvalues in the large-N limit, and therefore 
leads to the same universal Wigner distributions. However, this distribution is valid only in 
the weakly disordered or chaotic regime, and as we argued before, the impact of localization 
can be accommodated phenomenologically by choosing a Lagrange multiplier function 
constraining Tr(S + St), or equivalently cos@. Because we have no microscopic model 
at this point, we will choose the constraint, with the correct qualitative features, such that 
the model is exactly solvable. 

Our model corresponds to the choice 

w(e)  - (1 - Cose)N/A. (2) 

Clearly this bas the qualitative features mentioned above, where the parameter 1 will serve 
as a measure of localization; decreasing h increases the constraint on cos@. We will show 
that this model is solvable in the sense that the spectral correlations can be written down 
in terms of known functions. It mrns out that a more general model with two independent 
parameters, which contains our model (2) as a special limiting case, is also exactly solvable. 
It is because of its simplicity as well as its possible relation to other problems in physics, 
that we will start with the more general model, write down the general solution, and will 
come back to our special limiting case when we analyse and interpret the solution. 

The more general two-parameter model is defined by the choice 

where we have used the notation ( x ;  q ) .  = ni, ( l  - xqk) .  With the choice a = 
q N l A , A  >> 1, and q = in the limit N + CO, or equivalently q + 1,  we obtain 
w(@) = (1/27~)2~/*(1 - cos%')N/A [ l l ] ,  which is our model defined in (2). We will first 
obtain the general solution for the model (3). and show that only in the above special limit 
the impact of localization becomes observable in the spectral correlations. In particular, we 
will show that in this limit a gap appears in the density. We will also show as an explicit 
example that in this case the number variance obtained from the two-level function shows 
deviations from the Wigner distribution, towards a Poisson limit. Note that in the other limit 
a = 0 and q + 0, w(@)  + 1/27r, and the model reduces to Dyson's circular ensemble. 

For simplicity, we will consider only the case where the symmetry parameter (Y = 2, 
corresponding to the case without time reversal symmetry. We use the method of orthogonal 
polynomials [l] and write the product term n,,,<" leiam -eien[ as a Vandermonde determinant 
whose elements form a set of polynomials orthogonal with respect to the measure w(@) .  For 
our particular choice of w ( @ )  given in (3). these are the (normalized) Szego polynomials 
generalized by Askey [l l]:  
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where the overline denotes complex conjugate. In terms of these polynomials the two-level 
correlation function is given by [l] 

N-1 - 

k=O 
K N @ .  4) = @k(e")@k('@). (6) 

We now use the unit-circle analogue of the Christoffel-Darboux identity [16] 

where z I  = e", 22 = 26 and we have used the notation Qi (z )  = z"Q, ( l / z ) .  We ob& the 
large-N asymptotics of the polynomials by noting that the ratio 

Thus for N + CO 

where in the last line we have used the q-binomial theorem [121. The two-level kernel in 
the large-N limit can then be written in the general form 

KN X 2n 
(9) 

where the shift A is given by 

and we have used the notation ( x ,  y ,  . . . , z ;  q). = ( x ;  q),(y; q). . . . ( z ;  q).. For fixed q,  in 
the limit 6 % 6, this can be simplified and we obtain 

Writing 1/(1 - xqk+'lZ) = E:,, (xqk+l/z)l and summing over k first, we obtain the 
following identity: 

The factor (1 - q ) / ( l  - q'+') -+ 1 for q << 1, while it is 1/(1+ 1) in the limit q + 1. 
In both limits the sum can be explicitly evaluated; it tums out that the result for q + 1 
contains the q << 1 limit, giving a single expression valid for both limits. The result, in the 
limit 6 --f 4, is 

Equations (9) and (13) constitute the solution for large N for the general model defined 
by (3), in the limit 6 % $. 



Letter to the Editor L545 

We first consider the density of levels given by U ( @ )  = KN(e, e). Using equations (6), 
(9) and (13). we get 

Note that the density has a finite-N correction to the uniform density N/2n of the circular 
ensemble. It is clear that in the N -+ 00 limit, the correction might survive only in the 
q -+ 1 limit such that the product (1 -q)N is kept finite. This is precisely the special limit, 
namely q = and a = qNlA that defines model (2), and as we argued in the beginning, 
this is indeed the limit where we expect the effect of localization to become observable in 
the spectral correlations. In the rest of our discussions we will restrict ourselves to this l i t  
alone. 

The expression (14) for the density of levels has one apparently very disturbing 
feature. Although it is properly normalized to N, the density actually becomes negative for 
sufficiently small values of 6'. In fact the condition for the density to remain positive for 
all values of 0 is that the parameter A t A, = 2N(& - 1). For 1 << A << A,, the density 
is positive only for 0 > 0, given by 2 ~ s i n ( @ , / Z )  - l/A. Thus with decreasing A, i.e. 
increasing localization, 0, increases. We will now show that the negative density for A e A, 
implies that there exists a gap in the spectrum for 0 < e,. 

In order to understand the density for A < A,, we will briefly use an alternative approach 
based on the l a rge4  'Coulomb-gas' approximation [13]. If we write w ( 0 )  = e-"(e), we 
can interpret the right-hand side of (1) as e-H, where the effective 'Hamiltonian' 

and the eigenvalues are given by the stationary condition 

where U ( @ )  is the density to be evaluated, V' is the derivative of V with respect to e, P 
denotes a principal value integral, and the range I of the integral is determined from the 
normalization s, d@ U ( @ )  = N. Expanding cot(A - B )  and using the normalization, we get 
(CY = 2) 

where we have allowed for the possibility that the eigenvalues lie in the region lei > 
e,, 0, 6 x .  For our model, V(e) = -In(l - cosB)N/A + constant. Using x = 
[cot(8/2)J/[cot(e,/2)] and y = [cot(q5/2)]/[cot(8/2)], we can rewrite (16) as 

where we have defined b = cot2(&/Z), and f ( y ) d y  = u(q5)d@. This integral can be 
inverted [ 141 to give 

The integral can be evaluated explicitly, giving 
x l + x  

- l+bx*'  
-- 
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Going back to the original variables, we obtain 

The normalization condition gives 
. e, I 1 

2 l + h  h 
sin- = - - - A >> 1. 

This agrees with our previous result on the existence of the gap as well as its dependence on 
A. A similar model, with w(6') = e(zN/A)cOse has been solved for the density in the saddle- 
point approximation in the context of the large-N behaviour of U(N) lattice gauge theories 
in two spacetime dimensions [SI. A similar gap was found (at 8 = a), which suggests 
that the result is not peculiar to the particular model we chose; in particular the results from 
our solvable model should be qualitatively valid for models involving qualitatively similar 
constraints on Tr(S + St). 

The advantage of our solvable model is that we can go beyond the density and 
evaluate the two-level kernel from which all n-point correlation functions can be calculated. 
However, we cannot use equations (5) and (6) directly because of the gap in the spectrum. 
The existence of the gap suggests that we must allow for this possibility from the beginning, 
and replace (5) by 

Although this means that the polynomials are no longer given exactly by (4), we note that 
for small e,, the density in the largell' limit is almost uniform everywhere except near 
the edges. If we restrict ourselves to this uniform density regime, far from the edges, 
then the only real effect of the gap is to affect the normalization. We have taken this into 
account simply by renormalizing the polynomials (4) by a factor f i  in (20) above. For 
small values of 0,. equivalent to large A, the normalization constant is C c 1/(1 +c/A), 
where c is a constant O(1). We will restrict our following discussions only to the regime 
0 = a, where the density is approximately uniform, and the kernel K ~ ( 0 , 4 )  becomes 
translationally invariant: 

where we have included the normalization constant C explicitly, and K ( $  - 0 )  is the 
complex conjugate of K ( 8  - 4). In order to compare with the random-matrix theories, 
we have to 'unfold' the spectrum by going to a new variable where the mean spacing 
between nearest levels is unity [I]. This is obtained by choosing the new variables 
(c, q) = (NC/Zn)( l+  l/A)(0, 4). In terms of these variables the two-level kernel becomes 
simply 

Note that this looks identical to the two-level kernel of the Gaussian random-matrix 
theory [I], if we define a new set of variables (c*, q') = (l/C)((, q). However, in this 
new variable the mean spacing is not unity, but 1/C, so the 'unfolding' of the spectrum 
will take us back to the variable ((, q). 

The two-level kernel can now be used to calculate, e.g., the nearest-neighbour spacing 
distribution or the long-range specf~al rigidity. To demonmate the qualitative effects of 
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localization, we will explicitly calculate the number variance for an interval s, defined as 

( s n ) ~  = s - Z[ (s - r)IK(r)IZ 

= (n2) - (n)'. Using r = C - q.  this is given in terms of the kernel as [I] 

where y is Euler's constant. As A + 00, the linear dependence on s cancels exactly and 
the expression reduces to the universal logarithmic dependence on s characteristic of the 
Wigner distribution. However, for any finite A, there is a leftover linear dependence on s 
with the slope increasing with decreasing A (increasing localization). This clearly signals 
a crossover from a Wigner towards a Poisson distribution (for which (8n)' = s) similar to 
that seen in the case of unbounded eigenvalues [6], and also similar to the crossover seen in 
numerical studies of the number variance for S-matrix eigenvalues [9] describing transport 
in mesoscopic conductors [7] as well as for A3 statistics (a related measure of the long- 
range spectral rigidity [l]) of the Flouquet-matrix eigenvalues describing time evolution of 
the Fermi-accelerator model [SI. Note that if A is related to a physical parameter like the 
conductance which itself scales with N, then starting from an intermediate case for finite N 
as given in (23), the distribution will scale towards either Wigner or Poisson limit depending 
on whether A scales towards, CO or 0 with increasing N. 

We briefly point out that the general model (3) might include other physically interesting 
models. For example in the limit a = 0 and q + 1-, the function [171 

which is the model considered in 1151. 
In suqnary, we have constructed a one-parameter solvable model (as a special limit 

of a more general two-parameter solvable model) for the joint probability distribution of 
eigenvalues of unitary matrices which, in the IargeN limit, leads to a gap in the density. 
The gap increases as a function of the parameter. By analysing the effect of the gap on the 
number variance, we argued that the model qualitatively describes the effect of localization. 

KAM thanks Y Chen for valuable comments on the manuscript, and Z Qiu for a discussion 
on [15]. Research at USF was partially supported by the NSF under grant DMS 9203659. 
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